A new high-temperature multinuclear-magnetic-resonance probe and the self-diffusion of light and heavy water in sub- and supercritical conditions.

نویسندگان

  • Ken Yoshida
  • Chihiro Wakai
  • Nobuyuki Matubayasi
  • Masaru Nakahara
چکیده

A high-resolution nuclear-magnetic-resonance probe (500 MHz for 1H) has been developed for multinuclear pulsed-field-gradient spin-echo diffusion measurements at high temperatures up to 400 degrees C. The convection effect on the self-diffusion measurement is minimized by achieving the homogeneous temperature distributions of +/-1 and +/-2 degrees C, respectively, at 250 and 400 degrees C. The high temperature homogeneity is attained by using the solid-state heating system composed of a ceramic (AlN) with high thermal conductivity comparable with that of metal aluminium. The self-diffusion coefficients D for light (1H2O) and heavy (2H2O) water are distinguishably measured at subcritical temperatures of 30-350 degrees C with intervals of 10-25 degrees C on the liquid-vapor coexisting curve and at a supercritical temperature of 400 degrees C as a function of water density between 0.071 and 0.251 gcm3. The D value obtained for 1H2O is 10%-20% smaller than those previously reported because of the absence of the convection effect. At 400 degrees C, the D value for 1H2O is increased by a factor of 3.7 as the water density is reduced from 0.251 to 0.071 gcm3. The isotope ratio D(1H2O)D(2H2O) decreases from 1.23 to approximately 1.0 as the temperature increases from 30 to 400 degrees C. The linear hydrodynamic relationship between the self-diffusion coefficient divided by the temperature and the inverse viscosity does not hold. The effective hydrodynamic radius of water is not constant but increases with the temperature elevation in subcritical water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant Removal from Mesoporous ‎Silica Shell of Core-Shell Magnetic ‎Microspheres by Modified Supercritical ‎CO2‎

   In this paper, a kind of core–shell magnetic mesoporous microspheres of Fe3O4@SiO2@meso-SiO2 with high surface areawas prepared, where magnetic Fe3O4 nanospheres were used as the inner core, tetraethyl orthosilicate (TEOS) as silica source, and cetyltrimethylamonium bromide (CTAB) as pore forming agent. Methanol-enhanced s...

متن کامل

Multinuclear Variable Temperature NMR Studies on Cyanide, Water and Hydroxyl Group Scrambling on Halogenation of K2[Pt(CN)4] and Related Reactions

195Pt and 1H NMR has been used to show that addition of chlorine and bromine to [Pt(CN)4]2_ in presence of perchloric acid in water results in cyanide and water scrambling with formation of eleven complexes of the type [Pt(CN)4-nCl(H2O)n+1](n-1)+ (n=0, 1, 2, 3, 4). Addition of NBu4OH ...

متن کامل

Analytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging

Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...

متن کامل

Drug Nano-Particles Formation by Supercritical Rapid Expansion Method; Operational Condition Effects Investigation

Dissolution pressure and nozzle temperature effects on particle size and distribution were investigated for RESS (Rapid Expansion of Supercritical Solution) process. Supercritical CO2 was used as solvent and Ibuprofen was applied as the model component in all runs. The resulting Ibuprofen nano-particles (about 50 nm in optimized runs) were analyzed by SEM and laser diffraction pa...

متن کامل

Synthesis of Novel Magnetic Biochar Using Microwave Heating for Removal of Arsenic from Waste Water

Novel magnetic biochar has been successfully synthesized by using microwave technique, using discarded materials such as Empty Fruit Bunch (EFB). The optimized conditions for the best novel magnetic biochar synthesis are at 900 w reaction power, 20 min reaction time, and impregnation ratio 0.5 (biomas:FeCl3) The details physical and chemical analyses of novel magnetic biochar wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 16  شماره 

صفحات  -

تاریخ انتشار 2005